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Abstract 

Communication overhead has been traditionally the primary metric for eval- 
uating rollback-recovery protocols. This paper reexamines the prominence of 
this metric in light of the recent increases in processor and network speeds. 
We introduce a new recovery algorithm for a family of rollback-recovery pro- 
tocols based on logging. The new algorithm incurs a higher communication 
overhead during recovery than previous algorithms, but it requires less access 
to stable storage and imposes no restrictions on the execution of live processes. 
Experimental results show that the new algorithm performs better than one 
that is optimized for low communication overhead. These results suggest that 
in modern environments, latency in accessing stable storage and intrusion of a 
particular algorithm on the execution of live processes are more important than 
the number of messages exchanged during recovery. 



1     Introduction 
The cost of communications has been traditionally the primary metric for eval- 
uating distributed rollback-recovery protocols [16, 17]. This cost is typically 
expressed as a function of the number of nodes in the system, describing the 
number of required messages and their sizes. The prominence of this metric is 
due in part to the high cost of interprocess communication in computer net- 
works at the time when many of these protocols were incepted. It also provides 
a precise yardstick against which different protocols can be compared. Other 
qualitative factors were also considered, but they were deemed less important 
given the practical constraints imposed by old technology. Examples of these 
secondary factors include the cost of accessing stable storage during recovery, 
whether a protocol requires live processes to block or refrain from exchanging 
messages during recovery, and whether a failure may result in some live processes 
becoming orphans [17]. 

In this paper, we reexamine the prominence of communication costs as the 
primary metric for evaluating rollback-recovery protocols. The advances in net- 
work and processor technologies and the relative increase in the penalty of ac- 
cessing stable storage are at odds with many premises that were valid when 
existing protocols were published. Therefore, we argue that other metrics be- 
come more important such as the effect of accessing stable storage and the 
protocol's intrusion on the operation of live processes during recovery. To sup- 
port this argument, the paper presents a new recovery algorithm that incurs 
additional control messages to allow live processes to continue operation with 
no interference or blocking to access stable storage during recovery. The al- 
gorithm can be used in several rollback-recovery protocols based on logging. 
It does not depend on the particular technique used to gather dependency in- 
formation during failure-free operation. To demonstrate this, we present the 
algorithm in the context of the Family-Based Logging protocols [2, 3, 4]. This 
family of protocols is a parameterized presentation of a set of recovery protocols 
that differ in the degree of failures they tolerate. We will describe the salient 
features of this protocol family as they relate to the purpose of this paper. 

We compare the performance of a prototype implementation of this algo- 
rithm to another algorithm that is optimized to reduce the communication 
overhead. The comparison shows that the new algorithm performs as well as 
or better than the message-optimal algorithm, depending on the number of 
failures. These results suggest that in light of recent advances in technology, 
supposedly secondary factors in evaluating rollback-recovery protocols are at 
least as important as the communication overhead. These factors include the 
effect of recovery on live processes beyond whether the protocol does or does 
not protect them from becoming orphans. It is hoped that theoretical formu- 
lations could be developed to precisely express the effects of these factors in 
the same way that message complexity became the yardstick for evaluating and 
comparing these protocols. 



The rest of this paper is organized as follows. We describe the family based 
logging protocols on which we base this research in Section 2. An informal pre- 
sentation of the recovery protocol and proofs of correctness appear in Sections 3 
and 4. The results of the experiments follow in Section 5. We review related 
work in Section 6 and conclude in Section 7. 

2    Family-Based Logging Protocols 

We assume a distributed, asynchronous system where deterministic processes 
may fail by crashing. The new recovery algorithm is explained in the context 
of the Family Based Logging protocols (FBL) [2, 3, 4]. These protocols are 
based on a simple idea: To tolerate / process failures in a rollback-recovery 
system, it is sufficient to log each message in the volatile store of its sender and 
to log its receipt order in the volatile store of / + 1 different hosts. This simple 
idea is the basis of a powerful family of protocols that possess several desirable 
properties. First, no logging to stable storage is necessary except in the case 
/ = n, where n is the number of hosts in the system. Therefore, applications pay 
only the overhead that corresponds to the number of failures they are willing 
to tolerate. Second, FBL protocols protect the live processes from the effects of 
failures. Specifically, no live process becomes an orphan because of a failure in 
another process [17]. Third, FBL protocols do not require any blocking during 
failure-free operation, thereby reducing the performance overhead. 

In summary, FBL protocols have the low-overhead properties of optimistic 
protocols without having to make any optimistic assumptions. They can be 
thought of as a parameterized generalization over previous rollback-recovery 
protocols. For example, the instance of FBL where / = 1 corresponds to a 
variation on Sender-Based Message Logging [11], while the instance where f — n 
corresponds to the Manetho protocol [8]. For this reason, we picked FBL to 
ensure the generality of the results presented here. 

2.1    An Example 

To illustrate the operation of FBL protocols, consider the example shown in 
Figure 1. In this example, there are three processes p, q and r represented by 
the vertical lines. Process p receives a message m and then sends a message w! 
to process q, which in turns sends a message m" to process r. For simplicity, 
the figure does not show the sender of message m. Consider the operation of 
the FBL protocols for / = 2 in the context of this example. According to the 
definition of FBL protocols, message m! is a descendent of message m, and 
message m" is a descendent of message m'. 

During failure-free operation, each process piggybacks on each application 
message the receipt orders of its direct and transitive descendents. The receiver 
of the message will record these receipt orders in its volatile log. The message 
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Figure 1: An example execution. 

data is logged in the volatile log of the sender, and is used for replay during 
recovery if needed. Propagation of the receipt order of a certain message stops as 
soon as it has been recorded in /+1 hosts. Therefore, the receipt order of m need 
not be propagated further than r for / = 2 in the example shown in Figure 1. 
The actual protocol is more complicated than this simple description implies, 
and the reader is referred to the appropriate reference for a full explanation [4]. 

Now, consider what happens when process p fails. To recover to a state 
consistent with the rest of the system, process p needs to receive message m 
in the same order as before the failure. The receipt order of the message is 
available in the volatile log of either process q or r. The data of the message 
is available in the log of its sender. Therefore, process p has the necessary 
information to recover to a state consistent with the rest of the system. The 
same argument extends up to two failures. Assume for instance that processes 
p and q fail. To recover to a state consistent with r, the recovering processes 
receive the required receipt orders of messages m and m' from r. Process p 
receives m from its sender, and because the execution is deterministic, it will 
reproduce m' for the benefit of the recovery of process q. 

2.2    Protocol Intrusion and its Effects 

The recovery algorithm presented in the original description of FBL protocols re- 
quires live processes to block while recovery is in progress [4]. This intrusion has 
the undesirable property of increasing the relative cost of a process failure and 
its impact on application performance. Many published protocols for rollback- 
recovery based on logging share this undesirable property [8, 9,10,12, 13, 16, 17]. 

To see why this intrusion is necessary, consider the example in Figure 1. 
Assume that process p fails after sending message m'. To recovery from the 
failure, process p restarts from a previous checkpoint and enlists the help of other 
processes to determine the receipt order of each message that it has received 



before the failure and replay it. If process r receives the request from p before 
receiving m", then it will not tell p about the receipt order of message m. Now 
assume that process q fails after sending message m" but before responding 
to p's request. Thus, process q loses the information about m's receipt order 
and after it restarts, it will not be able to convey any information about m to 
p. Process p thus has received replies from all live processes, none of which 
indicates the receipt order of message m. When process r receives message m" 
it will be inconsistent with the state of process p as m" reflects the receipt of 
message m by p. The fundamental problem here is that failures that occur 
during recovery may throw the system into an inconsistent state. 

Previous protocols resorted to different ways to solve this problem. For ex- 
ample, one protocol simply blocks the execution of the entire system pending 
the outcome of the recovery phase [12]. Another protocol prevents live pro- 
cesses from accepting any application message that could potentially create an 
inconsistency with its reply to a recovering process until the latter completes 
recovery [8]. Furthermore, this protocol requires each live process to record its 
replies to recovery requests on stable storage before it can send them, introduc- 
ing further delays. In the example above, this protocol requires that process 
r recognize that message m" is inconsistent with its reply to process p and 
therefore it refrains from consuming this message until p announces the set of 
messages that it was able to recover. Process r would then discard the message 
if p was unable to recover message m, or it would deliver it to the application 
otherwise. There are two problems with this approach. First, it may introduce 
unnecessary delays in delivering legitimate messages that would not create any 
inconsistencies. In the example above, if process p was able to get the informa- 
tion about message m from process q, then process r would be safe to consume 
the message as soon as it arrives. Second, the implementation of such a protocol 
requires non-trivial modifications to the communication protocol to recognize 
the potentially unsafe messages [7]. A complex implementation reduces the 
performance of the communication subsystem during failure-free operation and 
reduces the confidence in its robustness. 

To appreciate the effect of intrusion on live processes, consider again the 
example shown in Figure 1. Assume that as soon as process r receives the 
recovery request from process p, the protocol blocks the progress of process r 
or prevents it from receiving application messages that could potentially lead 
to inconsistencies. Consider the case when process q fails while process p is 
recovering. A typical implementation would require several seconds of timeouts 
and retrials to detect that process q has indeed failed. A recovery procedure 
would then reload the saved state of process q from stable storage. In light 
of the relatively high cost of stable storage access, and depending on the size 
of process q, restoring its state may take tens of seconds or a few minutes. 
Meanwhile, process r is unable to progress or is prevented from consuming 
application messages that would allow it to progress. Thus, if consuming the 
message would not result in any inconsistencies, or if the protocol altogether 



requires blocking of the live processes, then process r would unnecessarily waste 
tens of seconds or even minutes because of failures in other processes. Clearly, 
the situation would worsen in a larger system where a few simultaneous failures 
may occur. Thus, the effect of a failure on the application progress is not 
confined to the processes that fail, it extends to the live processes as a result of 
the intrusion required to guarantee safety. This fact is unfortunate given that 
protocols such as FBL go to a great length in shielding the live processes from 
the effects of failures. 

The algorithm in the following section solves this problem and can be applied 
to any instance of the FBL protocols. It does not depend on the particular 
method used to propagate and maintain the receipt orders of the messages 
during failure-free operation. Thus the results are applicable to other protocols 
which are instances of FBL [8, 11, 13]. 

3    The New Algorithm 

3.1 Rationale and Motivations 
A recovering process needs a consistent snapshot of the message receipt order 
information that is scattered throughout the system. This snapshot should be 
consistent despite failures that may occur during recovery. This fact does not 
fundamentally necessitate any blocking or intrusion on the execution of live 
processes. Furthermore, the cost of communication is not at all expensive in 
modern systems. This fact is consistent with the current technological trends 
and will likely continue for a while. We therefore contend that communication 
overhead should not be the sole target for optimization. Indeed, we strive to 
reduce the need for stable storage access and interference with live processes 
during recovery, even at the expense of additional messages. 

3.2 Data Structures 
Each process maintains the following variables: 

state : This variable indicates whether the process is live, recovering, or is a 
recovery leader. 

incarnation : This is an integer that is incremented by one each time a process 
recovers from a failure. Each process tags every application message it 
sends with its incarnation value. A receiver rejects any message that 
originates from a previous incarnation of its sender. 

incvector : This vector contains the incarnation numbers of the other processes 
in the system. 



depinfo : This is an abstract presentation of the message receipt order in- . 
formation that is maintained by the process.   It could take the form of 
dependency vectors [17], a dependency matrix [4, 12], or a dependency 
graph [8]. 

R: The set of failed processes that are recovering simultaneously with the pro- 
cess. 

L: The set of live processes. 

ord: A system-wide monotonic number that is incremented whenever a process 
starts recovery. The process whose recovery corresponds to the lowest 
value becomes the recovery leader. 

3.3    Informal Description 

For the case where / = n we model stable storage as an additional process that 
never fails or sends a message. If a process p fails, it will restore a previous 
checkpoint and increment its incarnation number. The process also acquires an 
ordinal number for its recovery, and it becomes a recovery leader if no "recov- 
ering" process has a lower number. Otherwise, it sets its state to "recovering" 
and blocks until the current recovery leader completes the algorithm. If the 
process is a recovery leader, it will broadcast a request for the incarnation num- 
ber to every "recovering" process. Each "recovering" process replies with its 
incarnation number and the recovery leader updates its incvector accordingly. 
After receiving replies from all recovering processes, the recovery leader sends a 
request to all live processes requesting their depinfo information. The request 
includes incvector. Each live process sends a reply containing its depinfo and 
updates its incvector. Using incvector, a live process stops receiving stale 
messages that originated before the failure of any recovering process. This step 
ensures that after replying to the recovery leader, a live process will not acquire 
a dependency on a stale message that may throw the system into an inconsis- 
tent state. After gathering all the depinfo data, the recovery leader sends it 
to each recovering process. The recovering processes use this data to replay the 
execution and recover to a consistent state [4]. 

If a live process fails before replying to the recovery leader, the latter restarts 
the gathering of the depinfo data by resending the depinfo request after updat- 
ing incvector. This step ensures that the recovery leader gathers a consistent 
snapshot of the depinfo data despite concurrent failures during recovery. If 
the recovery leader fails, then the next process in ordinal number becomes a 
recovery leader and restarts the algorithm. 

The algorithm does not restrict the progress of live processes by blocking 
them or restricting their message interactions. Live processes continue to process 
the messages they receive if the incarnation number tagging the message is valid. 
This step is necessary in any environment where messages can be delayed. 



3.4    Description 

The algorithm for the recovery leader follows. Note that steps 1 through 3 are 
executed by each recovering process including the leader. 

1. Restore state; 

2. incarnation <— incarnation + 1; 

3. oral <— ord+ 1; 

4. for each process q £ R do 
incvector[q] <— q.incarnation; 

5. for each process q £ L do 
if q failed then goto 4; 
depinfo <— q.depinfo; 
q.incvector <— incvector, 

6. for each process q E R do 
q.depinfo <— depinfo; 

4    Correctness Proof 

4.1 Definitions 

A message m is an antecedent of message m! if m happens before m! [14]. Mes- 
sage m' is also called a descendent of m. Figure 1 shows this relationship. Call 
a message m visible if there exists a live process that received it. 

4.2 Termination 

The algorithm restarts whenever a live process fails before responding to the 
recovery leader's depinfo request. Since no more than / failures occur, the 
algorithm cannot restart more than / times. The algorithm also does not block 
any live process, and recovering processes block only until the recovery leader 
finishes gathering the depinfo data. 

4.3 Safety 

To establish the safety of the algorithm, the resulting system state after recovery 
must show all antecedents of visible messages as received. We show this property 
by contradiction. Assume that the algorithm cannot determine the receipt order 
of a message m which is an antecedent of a visible message m!. Let process p 
be the receiver of m'. There are two cases to consider: 



1. The receipt order information piggybacked on m! contains the receipt 
order of m. There are two cases to consider: 

• Process p receives the message before responding to the recovery 
leader's request. Therefore, process p sends this information to the 
recovery leader which makes it available to the receiver of m. This 
remains true if the recovery leader fails and another process restarts 
the algorithm. 

• Process p receives the message after responding to the recovery leader's 
request. The message's sender cannot be a process that failed because 
incvector announced by the leader would force p to reject the mes- 
sage. Also, the message's sender cannot be a process that fails during 
recovery because the leader would restart the algorithm and p will 
send the receipt order to the leader. Therefore, the message sender 
must be a live process. A simple induction on the number of live 
processes shows that at least one live process will send the receipt 
order to the leader. 

2. The receipt order information piggybacked on m' does not contain the 
receipt order of m. In this case, the receipt order of the message must 
be stored at / + 1 processes, and at least one of them never fails and will 
always return the required information to the recovery leader. 

Thus, it is not possible to have a visible message without being able to 
recover the receipt orders of all its antecedents, contradicting the hypothesis. 

4.4    Liveness 

To establish the liveness of the algorithm, the failed processes must recover to a 
state where they have sent all visible messages. The proof proceeds by induction 
on n, the number of antecedents of a visible message. 

1. Base case, n = 0: In this case, the message does not have an antecedent 
and because the execution of the sender is deterministic, it will regenerate 
the message. 

2. Induction case, assume true for n: For n + 1, all antecedents of the mes- 
sage have been sent except for the immediate antecedent. But the visible 
message has the receipt order of its immediate antecedent or it is available 
because it has been logged at / + 1 processes. Therefore, the immediate 
antecedent can be replayed to its receiver (the sender of the visible mes- 
sage) in the specified order and because of the deterministic execution, 
the visible message will be regenerated. 



5    Evaluation 

We implemented a' prototype of the new recovery algorithm on a network of 
eight DEC 5000/200 workstations connected by a 155 Mb/sec ATM network. 
Each machine is equipped with a 25 MHz MIPS 3000 processors and 32 Mbytes 
of memory. The size of a process was about one Mbytes. For the purpose of 
comparison, we also implemented a prototype of a blocking recovery algorithm. 
In this algorithm, live processes block while recovery takes place. 

For a single failure, the recovering process took the same time to recover un- 
der both algorithms. However, the blocking algorithm caused each live process 
to block for about 50 milliseconds on average, while the new algorithm did not 
affect the execution of the live processes. 

In a second experiment, a process failed during the execution of the recov- 
ery of another process that failed earlier. Under the two algorithms, the two 
recovering processes required essentially about five seconds to recover. Most of 
this time was spent in failure detection and in restoring the state of the second 
process. The blocking algorithm required each live process to block for the same 
amount of time, while the new algorithm did not require such blocking. The 
extra communication overhead required by the second phase of the new algo- 
rithm was negligible (about milliseconds) compared to the time that required 
for failure detection and to restore the state of the second process. 

6    Related Work 

Rollback-recovery protocols based on logging have been the subject of active 
research [12, 13, 16, 17]. Most of this work has focused on the behavior of the 
system during failure-free operation, motivated by the understandable desire 
to optimize the performance for the most common case. Little is understood 
about the behavior of these protocols during failures. Unlike previous work, this 
paper focuses on understanding the performance and behavior of these protocols 
during recovery. 

The new recovery algorithm introduced in this paper does not require live 
processes to block or refrain from receiving messages during recovery. Previ- 
ous protocols typically requires either that the entire system block or that live 
processes refrain from receiving certain application messages. Furthermore, a 
live process need not perform a synchronous write operation on stable storage 
during recovery as many recovery protocols require. 

Rollback-recovery protocols based on logging have been long classified as 
either optimistic or pessimistic [17]. Optimistic protocols reduce the overhead 
of tracking dependencies during failure-free operation at the expense of compli- 
cating recovery and the potential for processes that survive failures to become 
orphans [10, 12, 13, 16, 17]. Pessimistic protocols, on the other hand, simplify 
recovery and insulate live processes from the effects of failures, at the expense 



of higher overhead for dependency tracking during failure-free operation [5, 15]. 
A new generation of protocols emerged that combine the advantages of both 
classes without the disadvantage. The Manetho protocol protects the live pro- 
cesses from the effect of failures without incurring large overhead to track depen- 
dencies [8]. The protocol is designed to tolerate an arbitrary number of failures. 
FBL protocols introduced a family of parameterized logging protocols that can 
tolerate a variable number of failures [2, 3, 4]. Thus, the application pays only 
the price of providing the desired degree of fault tolerance. These protocols 
combine the advantages of pessimistic and optimistic protocols. The general- 
ized description of these protocols is desirable in that it allows the expression 
of other protocols by simply picking the correct parameter. For example, the 
Manetho protocol is an instance of FBL protocols with / = n, where n is the 
total number of nodes in the system. 

Previous optimistic and FBL protocols affect the progress of live processes 
during recovery. Most optimistic protocols block the execution of the live pro- 
cesses while recovery is ongoing. This is perhaps acceptable or even desirable 
in optimistic protocols since some of these live processes may become orphans. 
Continuing the execution of a process that may become an orphan makes little 
sense since it will be aborted anyway. Furthermore, allowing a live process that 
may become an orphan to communicate with other processes will likely increase 
the number of orphans. 

FBL protocols (as published) also affect the progress of the live processes 
during recovery. The Manetho protocol requires that live processes refrain from 
accepting certain application messages while recovery is ongoing, and requires 
some synchronous logging to stable storage during recovery. The protocol pub- 
lished by Alvisi and Marzullo requires blocking the live processes to ensure 
safety [1]. This is an unfortunate fact, because FBL protocols go to a great 
length to protect live processes from becoming orphans. The new recovery al- 
gorithm presented in this paper solves this problem. It allows the application at 
live processes to progress regardless of the failures that occur, including those 
that occur during recovery. The price to be paid for this advantage is the higher 
overhead in communication. Evaluation shows that this overhead is not sub- 
stantial, and we believe that this will continue to be the case given the current 
trends of increasing processor speeds and network bandwidth. 

7    Conclusions 

The paper reexamined the tradition of using the communication overhead as the 
primary metric for evaluating rollback-recovery protocols. Recent increases in 
network and processor speeds are promoting other factors such as stable storage 
access and the intrusion of the protocol on the execution of live processes. To 
support this argument, the paper presented a new algorithm that imposes no 
restrictions on the execution of live processes during recovery at the expense of a 
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higher communication overhead compared to previous protocols. Live processes 
do not need to block or refrain from receiving messages during recovery. The 
algorithm is applicable to a family of log-based rollback-recovery protocols that 
differ in the number of failures they tolerate. An experimental study showed 
that the new algorithm performs as well as or better than another protocol that 
is designed to minimize the communication overhead. These results suggest 
a rethinking of our evaluation methods to include the effects of technological 
trends. It is hoped that theoretical formulations could be developed to precisely 
express the effects of these factors in the same way that message complexity 
became the yardstick for evaluating and comparing these protocols. 
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